Papers
Topics
Authors
Recent
2000 character limit reached

ACO Implementation for Sequence Alignment with Genetic Algorithms

Published 4 Jun 2014 in cs.CE and cs.NE | (1406.0930v1)

Abstract: In this paper, we implement Ant Colony Optimization (ACO) for sequence alignment. ACO is a meta-heuristic recently developed for nearest neighbor approximations in large, NP-hard search spaces. Here we use a genetic algorithm approach to evolve the best parameters for an ACO designed to align two sequences. We then used the best parameters found to interpolate approximate optimal parameters for a given string length within a range. The basis of our comparison is the alignment given by the Needleman-Wunsch algorithm. We found that ACO can indeed be applied to sequence alignment. While it is computationally expensive compared to other equivalent algorithms, it is a promising algorithm that can be readily applied to a variety of other biological problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.