Papers
Topics
Authors
Recent
2000 character limit reached

Maximizing the divergence from a hierarchical model of quantum states

Published 3 Jun 2014 in math-ph, math.MP, and quant-ph | (1406.0833v3)

Abstract: We study many-party correlations quantified in terms of the Umegaki relative entropy (divergence) from a Gibbs family known as a hierarchical model. We derive these quantities from the maximum-entropy principle which was used earlier to define the closely related irreducible correlation. We point out differences between quantum states and probability vectors which exist in hierarchical models, in the divergence from a hierarchical model and in local maximizers of this divergence. The differences are, respectively, missing factorization, discontinuity and reduction of uncertainty. We discuss global maximizers of the mutual information of separable qubit states.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.