Papers
Topics
Authors
Recent
2000 character limit reached

Robust pricing and hedging under trading restrictions and the emergence of local martingale models

Published 2 Jun 2014 in q-fin.MF | (1406.0551v2)

Abstract: We consider the pricing of derivatives in a setting with trading restrictions, but without any probabilistic assumptions on the underlying model, in discrete and continuous time. In particular, we assume that European put or call options are traded at certain maturities, and the forward price implied by these option prices may be strictly decreasing in time. In discrete time, when call options are traded, the short-selling restrictions ensure no arbitrage, and we show that classical duality holds between the smallest super-replication price and the supremum over expectations of the payoff over all supermartingale measures. More surprisingly in the case where the only vanilla options are put options, we show that there is a duality gap. Embedding the discrete time model into a continuous time setup, we make a connection with (strict) local-martingale models, and derive framework and results often seen in the literature on financial bubbles. This connection suggests a certain natural interpretation of many existing results in the literature on financial bubbles.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.