Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An HMM Based Named Entity Recognition System for Indian Languages: The JU System at ICON 2013 (1405.7397v1)

Published 28 May 2014 in cs.CL

Abstract: This paper reports about our work in the ICON 2013 NLP TOOLS CONTEST on Named Entity Recognition. We submitted runs for Bengali, English, Hindi, Marathi, Punjabi, Tamil and Telugu. A statistical HMM (Hidden Markov Models) based model has been used to implement our system. The system has been trained and tested on the NLP TOOLS CONTEST: ICON 2013 datasets. Our system obtains F-measures of 0.8599, 0.7704, 0.7520, 0.4289, 0.5455, 0.4466, and 0.4003 for Bengali, English, Hindi, Marathi, Punjabi, Tamil and Telugu respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vivekananda Gayen (2 papers)
  2. Kamal Sarkar (13 papers)
Citations (29)