Papers
Topics
Authors
Recent
2000 character limit reached

Large Scale, Large Margin Classification using Indefinite Similarity Measures

Published 27 May 2014 in cs.LG, cs.CV, and stat.ML | (1405.6922v1)

Abstract: Despite the success of the popular kernelized support vector machines, they have two major limitations: they are restricted to Positive Semi-Definite (PSD) kernels, and their training complexity scales at least quadratically with the size of the data. Many natural measures of similarity between pairs of samples are not PSD e.g. invariant kernels, and those that are implicitly or explicitly defined by latent variable models. In this paper, we investigate scalable approaches for using indefinite similarity measures in large margin frameworks. In particular we show that a normalization of similarity to a subset of the data points constitutes a representation suitable for linear classifiers. The result is a classifier which is competitive to kernelized SVM in terms of accuracy, despite having better training and test time complexities. Experimental results demonstrate that on CIFAR-10 dataset, the model equipped with similarity measures invariant to rigid and non-rigid deformations, can be made more than 5 times sparser while being more accurate than kernelized SVM using RBF kernels.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.