Matching measure, Benjamini-Schramm convergence and the monomer-dimer free energy (1405.6740v1)
Abstract: We define the matching measure of a lattice L as the spectral measure of the tree of self-avoiding walks in L. We connect this invariant to the monomer-dimer partition function of a sequence of finite graphs converging to L. This allows us to express the monomer-dimer free energy of L in terms of the measure. Exploiting an analytic advantage of the matching measure over the Mayer series then leads to new, rigorous bounds on the monomer-dimer free energies of various Euclidean lattices. While our estimates use only the computational data given in previous papers, they improve the known bounds significantly.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.