Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Formulas for monodromy (1405.5355v4)

Published 21 May 2014 in math.AG and math.CO

Abstract: Given a family $X$ of complex varieties degenerating over a punctured disc, one is interested in computing related invariants called the motivic nearby fiber and the refined limit mixed Hodge numbers, both of which contain information about the induced action of monodromy on the cohomology of a fiber of $X$. Our first main result is that the motivic nearby fiber of $X$ can be computed by first stratifying $X$ into locally closed subvarieties that are non-degenerate in the sense of Tevelev, and then applying an explicit formula on each piece of the stratification that involves tropical geometry. Our second main result is an explicit combinatorial formula for the refined limit mixed Hodge numbers in the case when $X$ is a family of non-degenerate hypersurfaces. As an application, given a complex polynomial, then, under appropriate conditions, we give a combinatorial formula for the Jordan block structure of the action of monodromy on the cohomology of the Milnor fiber, generalizing a famous formula of Varchenko for the associated eigenvalues. In addition, we give a formula for the Jordan block structure of the action of monodromy at infinity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube