Papers
Topics
Authors
Recent
2000 character limit reached

Commuting symplectomorphisms and Dehn twists in divisors

Published 18 May 2014 in math.SG | (1405.4563v2)

Abstract: Two commuting symplectomorphisms of a symplectic manifold give rise to actions on Floer cohomologies of each other. We prove the elliptic relation saying that the supertraces of these two actions are equal. In the case when a symplectomorphism $f$ commutes with a symplectic involution, the elliptic relation provides a lower bound on the dimension of $HF*(f)$ in terms of the Lefschetz number of $f$ restricted to the fixed locus of the involution. We apply this bound to prove that Dehn twists around vanishing Lagrangian spheres inside most hypersurfaces in Grassmannians have infinite order in the symplectic mapping class group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.