Commuting symplectomorphisms and Dehn twists in divisors (1405.4563v2)
Abstract: Two commuting symplectomorphisms of a symplectic manifold give rise to actions on Floer cohomologies of each other. We prove the elliptic relation saying that the supertraces of these two actions are equal. In the case when a symplectomorphism $f$ commutes with a symplectic involution, the elliptic relation provides a lower bound on the dimension of $HF*(f)$ in terms of the Lefschetz number of $f$ restricted to the fixed locus of the involution. We apply this bound to prove that Dehn twists around vanishing Lagrangian spheres inside most hypersurfaces in Grassmannians have infinite order in the symplectic mapping class group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.