Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Krieger's finite generator theorem for actions of countable groups I (1405.3604v5)

Published 14 May 2014 in math.DS

Abstract: For an ergodic probability-measure-preserving action $G \curvearrowright (X, \mu)$ of a countable group $G$, we define the Rokhlin entropy $h_G{\mathrm{Rok}}(X, \mu)$ to be the infimum of the Shannon entropies of countable generating partitions. It is known that for free ergodic actions of amenable groups this notion coincides with classical Kolmogorov--Sinai entropy. It is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Under this analogy we prove that Krieger's finite generator theorem holds for all countably infinite groups. Specifically, if $h_G{\mathrm{Rok}}(X, \mu) < \log(k)$ then there exists a generating partition consisting of $k$ sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.