Papers
Topics
Authors
Recent
2000 character limit reached

Scalable sparse covariance estimation via self-concordance

Published 13 May 2014 in stat.ML, cs.IT, math.IT, and math.OC | (1405.3263v1)

Abstract: We consider the class of convex minimization problems, composed of a self-concordant function, such as the $\log\det$ metric, a convex data fidelity term $h(\cdot)$ and, a regularizing -- possibly non-smooth -- function $g(\cdot)$. This type of problems have recently attracted a great deal of interest, mainly due to their omnipresence in top-notch applications. Under this \emph{locally} Lipschitz continuous gradient setting, we analyze the convergence behavior of proximal Newton schemes with the added twist of a probable presence of inexact evaluations. We prove attractive convergence rate guarantees and enhance state-of-the-art optimization schemes to accommodate such developments. Experimental results on sparse covariance estimation show the merits of our algorithm, both in terms of recovery efficiency and complexity.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.