On the positivity of Fourier transforms
Abstract: Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of necessary conditions for positivity of the Fourier transforms and test their ability of constraining the positivity domain. One uses analytic continuation and Jensen inequalities and the other deals with Toeplitz determinants and the Bochner theorem. Applications are discussed, including the extension to the two-dimensional Fourier-Bessel transform and the problem of positive reciprocity, i.e. positive functions with positive transforms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.