2000 character limit reached
A combinatorial proof that Schubert vs. Schur coefficients are nonnegative
Published 11 May 2014 in math.CO | (1405.2603v1)
Abstract: We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf's theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Grassmannian.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.