An Efficient Local Search for Partial Latin Square Extension Problem
Abstract: A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.