Papers
Topics
Authors
Recent
Search
2000 character limit reached

Empirical Bayes and Full Bayes for Signal Estimation

Published 8 May 2014 in cs.IT and math.IT | (1405.2113v1)

Abstract: We consider signals that follow a parametric distribution where the parameter values are unknown. To estimate such signals from noisy measurements in scalar channels, we study the empirical performance of an empirical Bayes (EB) approach and a full Bayes (FB) approach. We then apply EB and FB to solve compressed sensing (CS) signal estimation problems by successively denoising a scalar Gaussian channel within an approximate message passing (AMP) framework. Our numerical results show that FB achieves better performance than EB in scalar channel denoising problems when the signal dimension is small. In the CS setting, the signal dimension must be large enough for AMP to work well; for large signal dimensions, AMP has similar performance with FB and EB.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.