Empirical Bayes and Full Bayes for Signal Estimation
Abstract: We consider signals that follow a parametric distribution where the parameter values are unknown. To estimate such signals from noisy measurements in scalar channels, we study the empirical performance of an empirical Bayes (EB) approach and a full Bayes (FB) approach. We then apply EB and FB to solve compressed sensing (CS) signal estimation problems by successively denoising a scalar Gaussian channel within an approximate message passing (AMP) framework. Our numerical results show that FB achieves better performance than EB in scalar channel denoising problems when the signal dimension is small. In the CS setting, the signal dimension must be large enough for AMP to work well; for large signal dimensions, AMP has similar performance with FB and EB.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.