Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Disjointly homogeneous rearrangement invariant spaces via interpolation (1405.0681v1)

Published 4 May 2014 in math.FA

Abstract: A Banach lattice E is called p-disjointly homogeneous, 1< p< infty, when every sequence of pairwise disjoint normalized elements in E has a subsequence equivalent to the unit vector basis of l_p. Employing methods from interpolation theory, we clarify which rearrangement invariant (r.i.) spaces on [0,1] are p-disjointly homogeneous. In particular, for every 1<p< infty and any increasing concave function f on [0,1], which is not equivalent neither 1 nor t, there exists a p-disjointly homogeneous r.i. space with the fundamental function f. Moreover, in the class of all interpolation r.i. spaces with respect to the Banach couple of Lorentz and Marcinkiewicz spaces with the same fundamental function, dilation indices of which are non-trivial, for every 1<p< infty, there is only a unique p-disjointly homogeneous space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.