Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Onofri inequalities and rigidity results (1404.7338v2)

Published 29 Apr 2014 in math.AP

Abstract: This paper is devoted to the Moser-Trudinger-Onofri inequality on smooth compact connected Riemannian manifolds. We establish a rigidity result for the Euler-Lagrange equation and deduce an estimate of the optimal constant in the inequality on two-dimensional closed Riemannian manifolds. Compared to existing results, we provide a non-local criterion which is well adapted to variational methods, introduce a nonlinear flow along which the evolution of a functional related with the inequality is monotone and get an integral remainder term which allows us to discuss optimality issues. As an important application of our method, we also consider the non-compact case of the Moser-Trudinger-Onofri inequality on the two-dimensional Euclidean space, with weights. The standard weight is the one that is computed when projecting the two-dimensional sphere using the stereographic projection, but we also give more general results which are of interest, for instance, for the Keller-Segel model in chemotaxis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.