Papers
Topics
Authors
Recent
2000 character limit reached

The skew-rank of oriented graphs (1404.7230v1)

Published 29 Apr 2014 in math.CO

Abstract: An oriented graph $G\sigma$ is a digraph without loops and multiple arcs, where $G$ is called the underlying graph of $G\sigma$. Let $S(G\sigma)$ denote the skew-adjacency matrix of $G\sigma$. The rank of the skew-adjacency matrix of $G\sigma$ is called the {\it skew-rank} of $G\sigma$, denoted by $sr(G\sigma)$. The skew-adjacency matrix of an oriented graph is skew symmetric and the skew-rank is even. In this paper we consider the skew-rank of simple oriented graphs. Firstly we give some preliminary results about the skew-rank. Secondly we characterize the oriented graphs with skew-rank 2 and characterize the oriented graphs with pendant vertices which attain the skew-rank 4. As a consequence, we list the oriented unicyclic graphs, the oriented bicyclic graphs with pendant vertices which attain the skew-rank 4. Moreover, we determine the skew-rank of oriented unicyclic graphs of order $n$ with girth $k$ in terms of matching number. We investigate the minimum value of the skew-rank among oriented unicyclic graphs of order $n$ with girth $k$ and characterize oriented unicyclic graphs attaining the minimum value. In addition, we consider oriented unicyclic graphs whose skew-adjacency matrices are nonsingular.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.