On Upper and Lower Bounds on the Length of Alternating Towers
Abstract: A tower between two regular languages is a sequence of strings such that all strings on odd positions belong to one of the languages, all strings on even positions belong to the other language, and each string can be embedded into the next string in the sequence. It is known that if there are towers of any length, then there also exists an infinite tower. We investigate upper and lower bounds on the length of finite towers between two regular languages with respect to the size of the automata representing the languages in the case there is no infinite tower. This problem is relevant to the separation problem of regular languages by piecewise testable languages.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.