Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case (1404.4392v2)
Abstract: The 'relativistic' Heun equation is an 8-coupling difference equation that generalizes the 4-coupling Heun differential equation. It can be viewed as the time-independent Schr\"odinger equation for an analytic difference operator introduced by van Diejen. We study Hilbert space features of this operator and its 'modular partner', based on an in-depth analysis of the eigenvectors of a Hilbert-Schmidt integral operator whose integral kernel has a previously known relation to the two difference operators. With suitable restrictions on the parameters, we show that the commuting difference operators can be promoted to a modular pair of self-adjoint commuting operators, which share their eigenvectors with the integral operator. Various remarkable spectral symmetries and commutativity properties follow from this correspondence. In particular, with couplings varying over a suitable ball in ${\mathbb R}8$, the discrete spectra of the operator pair are invariant under the $E_8$ Weyl group. The asymptotic behavior of an 8-parameter family of orthonormal polynomials is shown to be shared by the joint eigenvectors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.