Papers
Topics
Authors
Recent
Search
2000 character limit reached

Interplay between homological dimensions of a complex and its right derived section

Published 15 Apr 2014 in math.AC | (1404.3982v2)

Abstract: Let $(R,\mathfrak{m})$ be a commutative Noetherian local ring, $\mathfrak{a}$ be a proper ideal of $R$ and $M$ be an $R$-complex in $\mathrm{D}(R)$. We prove that if $M\in\mathrm{D}f_\sqsubset(R)$ (respectively, $M\in\mathrm{D}f_\sqsupset(R)$), then $\mathrm{id}R\mathbf{R}\Gamma{\mathfrak{a}}(M)=\mathrm{id}R M$ (respectively, $\mathrm{fd}_R\mathbf{R}\Gamma{\mathfrak{a}}(M)=\mathrm{fd}R M$). Next, it is proved that the right derived section functor of a complex $M\in\mathrm{D}\sqsubset(R)$ ($R$ is not necessarily local) can be computed via a genuine left-bounded complex $G\simeq M$ of Gorenstein injective modules. We show that if $R$ has a dualizing complex and $M$ is an $R$-complex in $\mathrm{D}f_\square(R)$, then $\mathrm{Gfd}R\mathbf{R}\Gamma{\mathfrak{a}}(M)=\mathrm{Gfd}R M$ and $\mathrm{Gid}_R\mathbf{R}\Gamma{\mathfrak{a}}(M)=\mathrm{Gid}R M$. Also, we show that if $M$ is a relative Cohen-Macaulay $R$-module with respect to $\mathfrak{a}$ (respectively, Cohen-Macaulay $R$-module of dimension $n$), then $\mathrm{Gfd}_R\mathbf{H}{\mathrm{ht_M\mathfrak{a}}}{\mathfrak{a}}(M)=\mathrm{Gfd}RM+n$ (respectively, $\mathrm{Gid}_R\mathbf{H}n{\mathfrak{m}}(M)=\mathrm{Gid}_RM-n$). The above results generalize some known results and provide characterizations of Gorenstein rings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.