Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Inference on Directionally Differentiable Functions (1404.3763v2)

Published 14 Apr 2014 in math.ST and stat.TH

Abstract: This paper studies an asymptotic framework for conducting inference on parameters of the form $\phi(\theta_0)$, where $\phi$ is a known directionally differentiable function and $\theta_0$ is estimated by $\hat \theta_n$. In these settings, the asymptotic distribution of the plug-in estimator $\phi(\hat \theta_n)$ can be readily derived employing existing extensions to the Delta method. We show, however, that the "standard" bootstrap is only consistent under overly stringent conditions -- in particular we establish that differentiability of $\phi$ is a necessary and sufficient condition for bootstrap consistency whenever the limiting distribution of $\hat \theta_n$ is Gaussian. An alternative resampling scheme is proposed which remains consistent when the bootstrap fails, and is shown to provide local size control under restrictions on the directional derivative of $\phi$. We illustrate the utility of our results by developing a test of whether a Hilbert space valued parameter belongs to a convex set -- a setting that includes moment inequality problems and certain tests of shape restrictions as special cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.