The Extended Bloch Representation of Quantum Mechanics and the Hidden-Measurement Solution to the Measurement Problem (1404.2429v3)
Abstract: A generalized Bloch sphere, in which the states of a quantum entity of arbitrary dimension are geometrically represented, is investigated and further extended, to also incorporate the measurements. This extended representation constitutes a general solution to the measurement problem, inasmuch it allows to derive the Born rule as an average over hidden-variables, describing not the state of the quantum entity, but its interaction with the measuring system. According to this modelization, a quantum measurement is to be understood, in general, as a tripartite process, formed by an initial deterministic decoherence-like process, a subsequent indeterministic collapse-like process, and a final deterministic purification-like process. We also show that quantum probabilities can be generally interpreted as the probabilities of a first-order non-classical theory, describing situations of maximal lack of knowledge regarding the process of actualization of potential interactions, during a measurement.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.