Strongly continuous and locally equi-continuous semigroups on locally convex spaces (1404.2035v3)
Abstract: We consider locally equi-continuous strongly continuous semigroups on locally convex spaces (X,tau). First, we show that if (X,tau) has the property that weak* compact sets of the dual are equi-continuous, then strong continuity of the semigroup is equivalent to weak continuity and local equi-continuity. Second, we consider locally convex spaces (X,tau) that are also equipped with a `suitable' auxiliary norm. We introduce the set N of tau continuous semi-norms that are bounded by the norm. If (X,tau) has the property that N is closed under countable convex combinations, then a number of Banach space results can be generalised in a straightforward way. Importantly, we extend the Hille-Yosida theorem. We apply the results to the study of transition semigroups of Markov processes on complete separable metric spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.