A limit theorem for a 3-period time-dependent quantum walk (1404.1509v4)
Abstract: We consider a discrete-time 2-state quantum walk on the line. The state of the quantum walker evolves according to a rule which is determined by a coin-flip operator and a position-shift operator. In this paper we take a 3-periodic time evolution as the rule. For such a quantum walk, we get a limit distribution which expresses the asymptotic behavior of the walker after a long time. The limit distribution is different from that of a time-independent quantum walk or a 2-period time-dependent quantum walk. We give some analytical results and then consider a number of variants of our model and indicate the result of simulations for these ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.