Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Fractional Sobolev and Hardy-Littlewood-Sobolev inequalities (1404.1028v2)

Published 3 Apr 2014 in math.FA and math.AP

Abstract: This work focuses on an improved fractional Sobolev inequality with a remainder term involving the Hardy-Littlewood-Sobolev inequality which has been proved recently. By extending a recent result on the standard Laplacian to the fractional case, we offer a new, simpler proof and provide new estimates on the best constant involved. Using endpoint differentiation, we also obtain an improved version of a Moser-Trudinger-Onofri type inequality on the sphere. As an immediate consequence, we derive an improved version of the Onofri inequality on the Euclidean space using the stereographic projection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.