Endomorphisms of the lattice of epigroup varieties (1404.0478v6)
Abstract: We examine varieties of epigroups as unary semigroups, that is semigroups equipped with an additional unary operation of pseudoinversion. The article contains two main results. The first of them indicates a countably infinite family of injective endomorphisms of the lattice of all epigroup varieties. An epigroup variety is said to be a variety of finite degree if all its nilsemigroups are nilpotent. The second result of the article provides a characterization of epigroup varieties of finite degree in a language of identities and in terms of minimal forbidden subvarieties. Note that the first result is essentially used in the proof of the second one.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.