Papers
Topics
Authors
Recent
2000 character limit reached

Computational solution to quantum foundational problems (1403.7686v6)

Published 30 Mar 2014 in quant-ph

Abstract: This paper argues that the requirement of applicableness of quantum linearity to any physical level from molecules and atoms to the level of macroscopic extensional world, which leads to a main foundational problem in quantum theory referred to as the "measurement problem", actually has a computational character: It implies that there is a generic algorithm, which guarantees exact solutions to the Schrodinger equation for every physical system in a reasonable amount of time regardless of how many constituent microscopic particles it comprises. From the point of view of computational complexity theory, this requirement is equivalent to the assumption that the computational complexity classes P and NP are equal, which is widely believed to be very unlikely. As demonstrated in the paper, accepting the different computational assumption called the Exponential Time Hypothesis (that involves P!=NP) would justify the separation between a microscopic quantum system and a macroscopic apparatus (usually called the Heisenberg cut) since this hypothesis, if true, would imply that deterministic quantum and classical descriptions are impossible to overlap in order to obtain a rigorous derivation of complete properties of macroscopic objects from their microstates.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.