Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multiple phase transitions of the susceptible-infected-susceptible epidemic model on complex networks (1403.6670v3)

Published 26 Mar 2014 in physics.soc-ph and q-bio.PE

Abstract: The epidemic threshold of the susceptible-infected-susceptible (SIS) dynamics on random networks having a power law degree distribution with exponent $\gamma>3$ has been investigated using different mean-field approaches, which predict different outcomes. We performed extensive simulations in the quasistationary state for a comparison with these mean-field theories. We observed concomitant multiple transitions in individual networks presenting large gaps in the degree distribution and the obtained multiple epidemic thresholds are well described by different mean-field theories. We observed that the transitions involving thresholds which vanishes at the thermodynamic limit involve localized states, in which a vanishing fraction of the network effectively contribute to epidemic activity, whereas an endemic state, with a finite density of infected vertices, occurs at a finite threshold. The multiple transitions are related to the activations of distinct sub-domains of the network, which are not directly connected.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.