Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Entropy Estimates for DAG-Based Ontologies (1403.4887v2)

Published 19 Mar 2014 in cs.CL

Abstract: Motivation: Entropy measurements on hierarchical structures have been used in methods for information retrieval and natural LLMing. Here we explore its application to semantic similarity. By finding shared ontology terms, semantic similarity can be established between annotated genes. A common procedure for establishing semantic similarity is to calculate the descriptiveness (information content) of ontology terms and use these values to determine the similarity of annotations. Most often information content is calculated for an ontology term by analyzing its frequency in an annotation corpus. The inherent problems in using these values to model functional similarity motivates our work. Summary: We present a novel calculation for establishing the entropy of a DAG-based ontology, which can be used in an alternative method for establishing the information content of its terms. We also compare our IC metric to two others using semantic and sequence similarity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.