Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Feedback Generation for Performance Problems in Introductory Programming Assignments (1403.4064v2)

Published 17 Mar 2014 in cs.PL

Abstract: Providing feedback on programming assignments manually is a tedious, error prone, and time-consuming task. In this paper, we motivate and address the problem of generating feedback on performance aspects in introductory programming assignments. We studied a large number of functionally correct student solutions to introductory programming assignments and observed: (1) There are different algorithmic strategies, with varying levels of efficiency, for solving a given problem. These different strategies merit different feedback. (2) The same algorithmic strategy can be implemented in countless different ways, which are not relevant for reporting feedback on the student program. We propose a light-weight programming language extension that allows a teacher to define an algorithmic strategy by specifying certain key values that should occur during the execution of an implementation. We describe a dynamic analysis based approach to test whether a student's program matches a teacher's specification. Our experimental results illustrate the effectiveness of both our specification language and our dynamic analysis. On one of our benchmarks consisting of 2316 functionally correct implementations to 3 programming problems, we identified 16 strategies that we were able to describe using our specification language (in 95 minutes after inspecting 66, i.e., around 3%, implementations). Our dynamic analysis correctly matched each implementation with its corresponding specification, thereby automatically producing the intended feedback.

Citations (68)

Summary

We haven't generated a summary for this paper yet.