Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal control of systems with noisy memory and BSDEs with Malliavin derivatives

Published 17 Mar 2014 in math.OC | (1403.4034v3)

Abstract: In this article we consider a stochastic optimal control problem where the dynamics of the state process, $X(t)$, is a controlled stochastic differential equation with jumps, delay and \emph{noisy memory}. The term noisy memory is, to the best of our knowledge, new. By this we mean that the dynamics of $X(t)$ depend on $\int_{t-\delta}t X(s) dB(s)$ (where $B(t)$ is a Brownian motion). Hence, the dependence is noisy because of the Brownian motion, and it involves memory due to the influence from the previous values of the state process. We derive necessary and sufficient maximum principles for this stochastic control problem in two different ways, resulting in two sets of maximum principles. The first set of maximum principles is derived using Malliavin calculus techniques, while the second set comes from reduction to a discrete delay optimal control problem, and application of previously known results by {\O}ksendal, Sulem and Zhang. The maximum principles also apply to the case where the controller only has partial information, in the sense that the admissible controls are adapted to a sub-$\sigma$-algebra of the natural filtration.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.