Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combination of PCA with SMOTE Resampling to Boost the Prediction Rate in Lung Cancer Dataset (1403.1949v1)

Published 8 Mar 2014 in cs.LG and cs.CE

Abstract: Classification algorithms are unable to make reliable models on the datasets with huge sizes. These datasets contain many irrelevant and redundant features that mislead the classifiers. Furthermore, many huge datasets have imbalanced class distribution which leads to bias over majority class in the classification process. In this paper combination of unsupervised dimensionality reduction methods with resampling is proposed and the results are tested on Lung-Cancer dataset. In the first step PCA is applied on Lung-Cancer dataset to compact the dataset and eliminate irrelevant features and in the second step SMOTE resampling is carried out to balance the class distribution and increase the variety of sample domain. Finally, Naive Bayes classifier is applied on the resulting dataset and the results are compared and evaluation metrics are calculated. The experiments show the effectiveness of the proposed method across four evaluation metrics: Overall accuracy, False Positive Rate, Precision, Recall.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.