Papers
Topics
Authors
Recent
2000 character limit reached

NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints (1403.1931v3)

Published 8 Mar 2014 in math.OC

Abstract: This paper proposes the algorithm NOWPAC (Nonlinear Optimization With Path-Augmented Constraints) for nonlinear constrained derivative-free optimization. The algorithm uses a trust region framework based on fully linear models for the objective function and the constraints. A new constraint-handling scheme based on an inner boundary path allows for the computation of feasible trial steps using models for the constraints. We prove that the iterates computed by NOWPAC converge to a first-order critical point. We also discuss the convergence of NOWPAC in situations where evaluations of the objective function or the constraints are inexact, e.g., corrupted by numerical errors. We determine a rate of decay that the magnitude of these numerical errors must satisfy, while approaching the critical point, to guarantee convergence. In settings where adjusting the accuracy of the objective or constraint evaluations is not possible, as is often the case in practical applications, we introduce an error indicator to detect these regimes and prevent deterioration of the optimization results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.