Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heat content asymptotics of some random Koch type snowflakes (1403.1811v1)

Published 7 Mar 2014 in math.PR

Abstract: We consider the short time asymptotics of the heat content $E$ of a domain $D$ of $\mathbb{R}d$. The novelty of this paper is that we consider the situation where $D$ is a domain whose boundary $\partial D$ is a random Koch type curve. When $\partial D$ is spatially homogeneous, we show that we can recover the lower and upper Minkowski dimensions of $\partial D$ from the short time behaviour of $E(s)$. Furthermore, in some situations where the Minkowski dimension exists, finer geometric fluctuations can be recovered and the heat content is controlled by $s\alpha e{f(\log(1/s))}$ for small $s$, for some $\alpha \in (0, \infty)$ and some regularly varying function $f$. The function $f$ is not constant is general and carries some geometric information. When $\partial D$ is statistically self-similar, then the Minkowski dimension and content of $\partial D$ typically exist and can be recovered from $E(s)$. Furthermore, the heat content has an almost sure expansion $E(s) = c s{\alpha} N_\infty + o(s\alpha)$ for small $s$, for some $c$ and $\alpha \in (0, \infty)$ and some positive random variable $N_\infty$ with unit expectation arising as the limit of some martingale.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.