Kohn decomposition for forms on coverings of complex manifolds constrained along fibres (1403.0967v1)
Abstract: The classical result of J.J. Kohn asserts that over a relatively compact subdomain $D$ with $C\infty$ boundary of a Hermitian manifold whose Levi form has at least $n-q$ positive eigenvalues or at least $q+1$ negative eigenvalues at each boundary point, there are natural isomorphisms between the $(p,q)$ Dolbeault cohomology groups defined by means of $C\infty$ up to the boundary differential forms on $D$ and the (finite-dimensional) spaces of harmonic $(p,q)$-forms on $D$ determined by the corresponding complex Laplace operator. In the present paper, using Kohn's technique, we give a similar description of the $(p,q)$ Dolbeault cohomology groups of spaces of differential forms taking values in certain (possibly infinite-dimensional) holomorphic Banach vector bundles on $D$. We apply this result to compute the $(p,q)$ Dolbeault cohomology groups of some regular coverings of $D$ defined by means of $C\infty$ forms constrained along fibres of the coverings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.