On the rank of the $2$-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{q},\sqrt{-1})$ (1403.0662v1)
Abstract: Let $d$ be a square-free integer, $\mathbf{k}=\mathbb{Q}(\sqrt d,\,i)$ and $i=\sqrt{-1}$. Let $\mathbf{k}_1{(2)}$ be the Hilbert $2$-class field of $\mathbf{k}$, $\mathbf{k}_2{(2)}$ be the Hilbert $2$-class field of $\mathbf{k}_1{(2)}$ and $G=\mathrm{Gal}(\mathbf{k}_2{(2)}/\mathbf{k})$ be the Galois group of $\mathbf{k}_2{(2)}/\mathbf{k}$. Our goal is to give necessary and sufficient conditions to have $G$ metacyclic in the case where $d=pq$, with $p$ and $q$ are primes such that $p\equiv 1\pmod 8$ and $q\equiv 5\pmod 8$ or $p\equiv 1\pmod 8$ and $q\equiv 3\pmod 4$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.