Scaling limit of the loop-erased random walk Green's function (1402.7345v2)
Abstract: We consider loop-erased random walk (LERW) running between two boundary points of a square grid approximation of a planar simply connected domain. The LERW Green's function is the probability that the LERW passes through a given edge in the domain. We prove that this probability, multiplied by the inverse mesh size to the power 3/4, converges in the lattice size scaling limit to (a constant times) an explicit conformally covariant quantity which coincides with the SLE(2) Green's function. The proof does not use SLE techniques and is based on a combinatorial identity which reduces the problem to obtaining sharp asymptotics for two quantities: the loop measure of random walk loops of odd winding number about a branch point near the marked edge and a "spinor" observable for random walk started from one of the vertices of the marked edge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.