Papers
Topics
Authors
Recent
Search
2000 character limit reached

Smashing localizations of rings of weak global dimension at most one

Published 28 Feb 2014 in math.AC, math.AT, and math.CT | (1402.7294v2)

Abstract: We show for a ring R of weak global dimension at most one that there is a bijection between the smashing subcategories of its derived category and the equivalence classes of homological epimorphisms starting in R. If, moreover, R is commutative, we prove that the compactly generated localizing subcategories correspond precisely to flat epimorphisms. We also classify smashing localizations of the derived category of any valuation domain, and provide an easy criterion for the Telescope Conjecture (TC) for any commutative ring of weak global dimension at most one. As a consequence, we show that the TC holds for any commutative von Neumann regular ring R, and it holds precisely for those Pr\"ufer domains which are strongly discrete.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.