Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bourgain-Delbaen $\mathcal{L}^{\infty}$-sums of Banach spaces (1402.6564v1)

Published 26 Feb 2014 in math.FA

Abstract: Motivated by a problem stated by S.A.Argyros and Th. Raikoftsalis, we introduce a new class of Banach spaces. Namely, for a sequence of separable Banach spaces $(X_n,|\cdot|n){n\in\mathbb{N}}$, we define the Bourgain Delbaen $\mathcal{L}{\infty}$-sum of the sequence $(X_n,|\cdot|n){n\in\mathbb{N}}$ which is a Banach space $\mathcal{Z}$ constructed with the Bourgain-Delbaen method. In particular, for every $1\leq p<\infty$, taking $X_n=\ell_p$ for every $n\in\mathbb{N}$ the aforementioned space $\mathcal{Z}p$ is strictly quasi prime and admits $\ell_p$ as a complemented subspace. We study the operators acting on $\mathcal{Z}_p$ and we prove that for every $n\in\mathbb{N}$, the space $\mathcal{Z}n_p=\sum{i=1}n\oplus \mathcal{Z}_p$ admits exactly $n+1$, pairwise not isomorphic, complemented subspaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.