Papers
Topics
Authors
Recent
Search
2000 character limit reached

Novel Deviation Bounds for Mixture of Independent Bernoulli Variables with Application to the Missing Mass

Published 25 Feb 2014 in stat.ML | (1402.6262v5)

Abstract: In this paper, we are concerned with obtaining distribution-free concentration inequalities for mixture of independent Bernoulli variables that incorporate a notion of variance. Missing mass is the total probability mass associated to the outcomes that have not been seen in a given sample which is an important quantity that connects density estimates obtained from a sample to the population for discrete distributions. Therefore, we are specifically motivated to apply our method to study the concentration of missing mass - which can be expressed as a mixture of Bernoulli - in a novel way. We not only derive - for the first time - Bernstein-like large deviation bounds for the missing mass whose exponents behave almost linearly with respect to deviation size, but also sharpen McAllester and Ortiz (2003) and Berend and Kontorovich (2013) for large sample sizes in the case of small deviations which is the most interesting case in learning theory. In the meantime, our approach shows that the heterogeneity issue introduced in McAllester and Ortiz (2003) is resolvable in the case of missing mass in the sense that one can use standard inequalities but it may not lead to strong results. Thus, we postulate that our results are general and can be applied to provide potentially sharp Bernstein-like bounds under some constraints.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.