An experimental exploration of Marsaglia's xorshift generators, scrambled
Abstract: Marsaglia proposed recently xorshift generators as a class of very fast, good-quality pseudorandom number generators. Subsequent analysis by Panneton and L'Ecuyer has lowered the expectations raised by Marsaglia's paper, showing several weaknesses of such generators, verified experimentally using the TestU01 suite. Nonetheless, many of the weaknesses of xorshift generators fade away if their result is scrambled by a non-linear operation (as originally suggested by Marsaglia). In this paper we explore the space of possible generators obtained by multiplying the result of a xorshift generator by a suitable constant. We sample generators at 100 equispaced points of their state space and obtain detailed statistics that lead us to choices of parameters that improve on the current ones. We then explore for the first time the space of high-dimensional xorshift generators, following another suggestion in Marsaglia's paper, finding choices of parameters providing periods of length $2{1024} - 1$ and $2{4096} - 1$. The resulting generators are of extremely high quality, faster than current similar alternatives, and generate long-period sequences passing strong statistical tests using only eight logical operations, one addition and one multiplication by a constant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.