Papers
Topics
Authors
Recent
Search
2000 character limit reached

Subgeometric rates of convergence in Wasserstein distance for Markov chains

Published 19 Feb 2014 in math.PR, math.ST, and stat.TH | (1402.4577v3)

Abstract: In this paper, we provide sufficient conditions for the existence of the invariant distribution and for subgeometric rates of convergence in Wasserstein distance for general state-space Markov chains which are (possibly) not irreducible. Compared to previous work, our approach is based on a purely probabilistic coupling construction which allows to retrieve rates of convergence matching those previously reported for convergence in total variation. Our results are applied to establish the subgeometric ergodicity in Wasserstein distance of non-linear autoregressive models and of the pre-conditioned Crank-Nicolson Markov chain Monte Carlo algorithm in Hilbert space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.