Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Symbiosis of Search and Heuristics for Random 3-SAT (1402.4455v1)

Published 18 Feb 2014 in cs.DS and cs.AI

Abstract: When combined properly, search techniques can reveal the full potential of sophisticated branching heuristics. We demonstrate this observation on the well-known class of random 3-SAT formulae. First, a new branching heuristic is presented, which generalizes existing work on this class. Much smaller search trees can be constructed by using this heuristic. Second, we introduce a variant of discrepancy search, called ALDS. Theoretical and practical evidence support that ALDS traverses the search tree in a near-optimal order when combined with the new heuristic. Both techniques, search and heuristic, have been implemented in the look-ahead solver march. The SAT 2009 competition results show that march is by far the strongest complete solver on random k-SAT formulae.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.