Papers
Topics
Authors
Recent
2000 character limit reached

Incremental Entity Resolution from Linked Documents

Published 18 Feb 2014 in cs.DB and cs.IR | (1402.4417v1)

Abstract: In many government applications we often find that information about entities, such as persons, are available in disparate data sources such as passports, driving licences, bank accounts, and income tax records. Similar scenarios are commonplace in large enterprises having multiple customer, supplier, or partner databases. Each data source maintains different aspects of an entity, and resolving entities based on these attributes is a well-studied problem. However, in many cases documents in one source reference those in others; e.g., a person may provide his driving-licence number while applying for a passport, or vice-versa. These links define relationships between documents of the same entity (as opposed to inter-entity relationships, which are also often used for resolution). In this paper we describe an algorithm to cluster documents that are highly likely to belong to the same entity by exploiting inter-document references in addition to attribute similarity. Our technique uses a combination of iterative graph-traversal, locality-sensitive hashing, iterative match-merge, and graph-clustering to discover unique entities based on a document corpus. A unique feature of our technique is that new sets of documents can be added incrementally while having to re-resolve only a small subset of a previously resolved entity-document collection. We present performance and quality results on two data-sets: a real-world database of companies and a large synthetically generated `population' database. We also demonstrate benefit of using inter-document references for clustering in the form of enhanced recall of documents for resolution.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.