Papers
Topics
Authors
Recent
2000 character limit reached

A convergence proof of the split Bregman method for regularized least-squares problems

Published 18 Feb 2014 in math.OC, cs.LG, and stat.ML | (1402.4371v1)

Abstract: The split Bregman (SB) method [T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323-43] is a fast splitting-based algorithm that solves image reconstruction problems with general l1, e.g., total-variation (TV) and compressed sensing (CS), regularizations by introducing a single variable split to decouple the data-fitting term and the regularization term, yielding simple subproblems that are separable (or partially separable) and easy to minimize. Several convergence proofs have been proposed, and these proofs either impose a "full column rank" assumption to the split or assume exact updates in all subproblems. However, these assumptions are impractical in many applications such as the X-ray computed tomography (CT) image reconstructions, where the inner least-squares problem usually cannot be solved efficiently due to the highly shift-variant Hessian. In this paper, we show that when the data-fitting term is quadratic, the SB method is a convergent alternating direction method of multipliers (ADMM), and a straightforward convergence proof with inexact updates is given using [J. Eckstein and D. P. Bertsekas, Mathematical Programming, 55 (1992), pp. 293-318, Theorem 8]. Furthermore, since the SB method is just a special case of an ADMM algorithm, it seems likely that the ADMM algorithm will be faster than the SB method if the augmented Largangian (AL) penalty parameters are selected appropriately. To have a concrete example, we conduct a convergence rate analysis of the ADMM algorithm using two splits for image restoration problems with quadratic data-fitting term and regularization term. According to our analysis, we can show that the two-split ADMM algorithm can be faster than the SB method if the AL penalty parameter of the SB method is suboptimal. Numerical experiments were conducted to verify our analysis.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.