Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice

Published 18 Feb 2014 in stat.CO and stat.ME | (1402.4281v1)

Abstract: This paper proposes a new approach for Bayesian and maximum likelihood parameter estimation for stationary Gaussian processes observed on a large lattice with missing values. We propose an MCMC approach for Bayesian inference, and a Monte Carlo EM algorithm for maximum likelihood inference. Our approach uses data augmentation and circulant embedding of the covariance matrix, and provides exact inference for the parameters and the missing data. Using simulated data and an application to satellite sea surface temperatures in the Pacific Ocean, we show that our method provides accurate inference on lattices of sizes up to 512 x 512, and outperforms two popular methods: composite likelihood and spectral approximations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.