Papers
Topics
Authors
Recent
2000 character limit reached

Quantum flag manifolds as quotients of degenerate quantized universal enveloping algebras

Published 18 Feb 2014 in math.QA and math.RT | (1402.4249v2)

Abstract: Let $\mathfrak{g}$ be a semi-simple Lie algebra with fixed root system, and $U_q(\mathfrak{g})$ the quantization of its universal enveloping algebra. Let $\mathcal{S}$ be a subset of the simple roots of $\mathfrak{g}$. We show that the defining relations for $U_q(\mathfrak{g})$ can be slightly modified in such a way that the resulting algebra $U_q(\mathfrak{g};\mathcal{S})$ allows a homomorphism onto (an extension of) the algebra $\mathrm{Pol}(\mathbb{G}q/\mathbb{K}{\mathcal{S},q})$ of functions on the quantum flag manifold $\mathbb{G}q/\mathbb{K}{\mathcal{S},q}$ corresponding to $\mathcal{S}$. Moreover, this homomorphism is equivariant with respect to a natural adjoint action of $U_q(\mathfrak{g})$ on $U_q(\mathfrak{g};\mathcal{S})$ and the standard action of $U_q(\mathfrak{g})$ on $Pol(\mathbb{G}q/\mathbb{K}{\mathcal{S},q})$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.