Papers
Topics
Authors
Recent
2000 character limit reached

The L^p-Poincaré inequality for analytic Ornstein-Uhlenbeck operators

Published 13 Feb 2014 in math.FA | (1402.3185v2)

Abstract: Consider the linear stochastic evolution equation dU(t) = AU(t) + dW_H(t), t\ge 0, where A generates a C_0-semigroup on a Banach space E and W_H is a cylindrical Brownian motion in a continuously embedded Hilbert subspace H of E. Under the assumption that the solutions to this equation admit an invariant measure \mu_\infty we prove that if the associated Ornstein-Uhlenbeck semigroup is analytic and has compact resolvent, then the Poincar\'e inequality \n f - \overline f\n_{Lp(E,\mu_\infty)} \le \n D_H f\n_{Lp(E,\mu_\infty)} holds for all 1<p<\infty. Here \overline f denotes the average of f with respect to \mu_\infty and D_H the Fr\'echet derivative in the direction of H.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.