State sum construction of two-dimensional topological quantum field theories on spin surfaces
Abstract: We provide a combinatorial model for spin surfaces. Given a triangulation of an oriented surface, a spin structure is encoded by assigning to each triangle a preferred edge, and to each edge an orientation and a sign, subject to certain admissibility conditions. The behaviour of this data under Pachner moves is then used to define a state sum topological field theory on spin surfaces. The algebraic data is a Delta-separable Frobenius algebra whose Nakayama automorphism is an involution. We find that a simple extra condition on the algebra guarantees that the amplitude is zero unless the combinatorial data satisfies the admissibility condition required for the reconstruction of the spin structure.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.