Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foreground segmentation based on multi-resolution and matting (1402.2013v1)

Published 10 Feb 2014 in cs.CV

Abstract: We propose a foreground segmentation algorithm that does foreground extraction under different scales and refines the result by matting. First, the input image is filtered and resampled to 5 different resolutions. Then each of them is segmented by adaptive figure-ground classification and the best segmentation is automatically selected by an evaluation score that maximizes the difference between foreground and background. This segmentation is upsampled to the original size, and a corresponding trimap is built. Closed-form matting is employed to label the boundary region, and the result is refined by a final figure-ground classification. Experiments show the success of our method in treating challenging images with cluttered background and adapting to loose initial bounding-box.

Citations (1)

Summary

We haven't generated a summary for this paper yet.